Abstract

An integral part of any open-type gas turbine plant is a low-emission combustion chamber, which is usually two-zone and cooled. One of the ways to reduce emission of harmful substanc-es is organizing low-emission low-temperature lean combustion with external heating of compo-nents. This paper investigates the effect of external heating of air and fuel gas on expansion of the lower combustion limit and stable flame position in a single-zone uncooled combustion chamber of a microgas turbine power plant. Stable position of the flame front in combustion chambers of this type mainly depends on the ratio between the average flow rate of the combus-tible-air mixture and the rate of turbulent combustion. This ratio depends on thermal, gas-dynamic, thermochemical and geometric factors. The purpose of this work is to substantiate the possibility of using the relative flow rate as a generalized characteristic. This goal was achieved in processing a large amount of published experimental data and numerical modeling of low-temperature combustion of lean mixtures. The most significant research result is determination of the range of relative flow rate (gk = 0.3…3.5·10-4 kg⁄s∙N), at which it is possible to ensure sta-ble flame position in a single-zone combustion chamber. Significance of the obtained results lies in the fact that using the relative flow rate makes it possible to quickly determine and analyze the geometric and gas-dynamic parameters and characteristics of turbulent combustion in com-bustion chambers of micro-gas turbine power plants.

Highlights

  • Acest obiectiv a fost atins în procesul de procesare a unei cantități mari de date publicate și de calcul numeric al arderii la temperatură scăzută a amestecurilor slabe la valori ridicate ale coeficientului de aer în exces

  • Flammability limits and laminar flame speed of hydrogen-air mixtures at sub-atmospheric pressures

Read more

Summary

ВНЕШНИМ ПОДОГРЕВОМ КОМПОНЕНТОВ

Что с увеличением температуры воздуха и топливного газа на входе в КС изменяются концентрационные пределы горения. Температуры подогрева воздуха и топливного газа по-разному влияют на показатели внутрикамерного рабочего процесса и газотурбинной установки в целом. L m0 f где LL — нижний предел горения топливного газа в об. Toixn , Анализ данных на рисунке 2 показывает, что температуры подогрева компонентов поразному влияют на нижний предел горения. Температура ГВС на нижнем пределе горения может быть определена из уравнения теплового баланса для смеси:. Результаты расчета TFAM при разных температурах подогрева компонентов по формуле (2) представлены в таблице 2. T in ox Анализ данных на рисунке 3 показывает, что температура ГВС практически не зависит от температуры подачи горючего, а в основном определяется температурой подачи окислителя. Результаты расчета TCP по формуле (3) при разных температурах подогрева компонентов представлены в таблице 3.

FAM FAM
МИКРОГАЗОТУРБИННЫХ ЭНЕРГОУСТАНОВОК
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.