Abstract

The subject under analysis is construction of differential equations of equilibrium in displacements for plane deformation of physically and geometrically nonlinear continuous media when the closing equations are biquadratically approximated in a Cartesian rectangular coordinate system. Proceeding from the assumption that, generally speaking, the diagrams of volume and shear deformation are independent from each other, six main cases of physical dependences are considered, depending on the relative position of the break points of biquadratic diagrams of volume and shear deformation. Construction of physical dependencies is based on the calculation of the secant module of volume and shear deformation. When approximating the graphs of volume and shear deformation diagrams using two segments of parabolas, the secant shear modulus in the first segment is a linear function of the intensity of shear deformations; the secant modulus of volume expansion-contraction is a linear function of the first invariant of the strain tensor. In the second section of the diagrams of both volume and shear deformation, the secant shear modulus is a fractional (rational) function of the intensity of shear deformations; the secant modulus of volume expansion-contraction is a fractional (rational) function of the first invariant of the strain tensor. The obtained differential equations of equilibrium in displacements can be applied in determining the stress-strain state of physically and geometrically nonlinear continuous media under plane deformation the closing equations of physical relations for which are approximated by biquadratic functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.