Abstract
게임에서 인공 지능은 주로 NPC(Non Player Character)와 적의 행동 패턴을 결정하거나 길 찾기에 사용된다. 이러한 인공 지능을 구현하는 경우에 FSM(Finite State Machine)과 플로킹(Flocking) 방법이 사용된다. FSM 방법에서는 상태 개수에 따라 NPC의 행동 개수에도 제한을 받는다. 상태 개수가 너무 적은 경우 플레이어들이 쉽게 NPC의 행동 패턴을 알 수 있으며 너무 많은 경우에는 구현이 복잡하게 된다. Flocking 방법에서는 리더의 결정에 따라 NPC들의 행동이 결정되기 때문에 NPC들의 이동 패턴이나 공격 방향을 쉽게 플레이어들이 알 수 있다. 본 논문에서는 이 문제를 개선하기 위하여 동물의 세력 투쟁 행동(공격, 위협, 의례적인 보여줌, 기피, 복종)들을 NPC에 적용하는 것을 제안하고 이를 Unity3D 엔진을 이용하여 구현한다. 이 논문은 실제감 있는 NPC 인공 지능 제작에 도움을 줄 수 있다. Artificial intelligence in the game is mainly used to determine patterns of behavior of NPC (Non Player Character) and the enemy, path finding. These artificial intelligence is implemented by FSM (Finite State Machine) or Flocking method. The number of NPC behavior in FSM method is limited by the number of FSM states. If the number of states is too small, then NPC player can know the behavior patterns easily. On the other hand, too many implementation cases make it complicated. The NPC behaviors in Flocking method are determined by the leader's decision. Therefore, players can know easily direction of movement patterns or attack pattern of NPCs. To overcome these problem, this paper proposes agonistic behaviors(attacks, threats, showing courtesy, avoidance, submission)in animals to apply for the NPC, and implements agonistic behaviors using Unity3D engine. This paper can help developing a real sense of the NPC artificial intelligence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.