Abstract

The concentration dependence of the magnetic properties of iron alloys with 3 – 25 at.% gallium has been studied. It is shown that with increasing gallium content, saturation induction decreases monotonically, but coercive force shows a stepped increase with a jump from 85 to 135 A/m between 12 and 15 at.% Ga. The effect of annealing in a dc magnetic field (magnetic field annealing (MFA)) on the behavior of residual induction and coercive force in samples containing from 3 to 18 at.% of gallium was investigated. After the MFA, in the alloy a magnetic anisotropy is induced: magnetic hysteresis loops become narrower, the residual induction increases and the coercive force decreases. The MFA efficiency reaches a maximum when the gallium content is at 15 – 18 at.%. The features of the structural state in iron-gallium alloys and their role in the formation of the magnetic properties during annealing in the dc magnetic field are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call