Abstract

The mode-Ⅲ fracture properties of the radial multi cracks on the edge of a nanoscale circular hole were theoretically investigated. Based on the Gurtin-Murdoch surface elasticity theory and the conformal mapping technique, the analytical solutions of the stress fields around the hole and cracks were given, and the closed form solution of the stress intensity factor at the crack tip was obtained. The size effect of the stress intensity factor was analyzed based on the solution. The effects of the crack number, the ratio of crack/hole radius and the surface defects on the stress intensity factor were discussed. The results indicate that, the dimensionless stress intensity factor has remarkable size-dependent effects when the sizes of the cracked hole are at the nanoscale. The variation of the stress intensity factor with the number of cracks is influenced by the crack/hole size ratio. The effects of the crack/hole size ratio on the stress intensity factors are restricted by the surface defects, and the effects of the surface properties on the stress intensity factor are also limited by the crack/hole size ratio. The surface effects on the stress intensity factors are independent of the number of cracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.