Abstract

We examined the diffusion of contaminants released from the southern coast around Fukushima, Japan, during the passage of typhoons using a three-dimensional numerical model (POM) to track diffusing radioactivity (RA) released from the nuclear power plant at Fukushima following the accident caused by the giant tsunami event in March 2011. Radioactive contaminants released during the passage of typhoons may have significantly affected not only Japanese but also Korean coastal waters. The model domain covered most of the northwestern Pacific including marginal seas such as the East/Japan Sea and the Yellow Sea. Several numerical experiments were conducted case studies focusing on the westward diffusion from the southern coast of Japan of contaminants derived from the source site (Fukushima) according to various attributes of the typhoons, such as intensity, track, etc. The model produced the following results 1) significant amounts of contaminants were transported in a westward direction by easterly winds favorable for generating a coastal air stream along the southern Japanese coast, 2) the contaminants reached as far as Osaka Bay with the passage of typhoons, forced by a 5-day positive sinusoidal form with a (right-) northward track east of Fukushima, and 3) the range of contamination was significant, extending to the interior of the East/Japan Sea around the Tsugaru Strait. The model suggests that contaminants and/or radioactivity released from Fukushima with the passage of typhoons can affect Korean waters including the northeastern East/Japan Sea around the Tsugaru Strait, especially when the typhoon tracks are favorable for generating a westward coastal air stream along the southern Japanese coast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.