Abstract

The paper examines general shells supported from the incurvity side by a cross-sectional ribbing directed parallel to coordinate lines. Ribs’ position on a shell is set using ordinary bar graph functions so that the rib and shell contact is arranged along the strip. A mean shell surface shall be considered as a coordinate surface. Geometrical nonlinearity and transverse shears are considered; and the shell is considered to be shallow. Forces are expressed via stress function in the mid-surface of the shell in such a way that the first two equilibrium equations are fulfilled identically. Shell deformation is expressed via this function. Introduction of ribs by means of ordinary bar graph functions does not cause difficulties for expression of deformations using forces with the consequent insertion to moments, since ordinary bar graph functions may be also used in denominator, this is not applicable for delta-function (when positions of narrow ribs are set using delta-functions). Mixed equations are established starting from the minimum of shell energy deformation functional. At that, except for equilibrium equations, the variational procedure allows obtaining the third equation of strain compatibility in a shell mid-surface for ribbed shells too. Curvature and torsion change functions are registered in the same way as for Kirchhoff-Love model considering transverse shears. Mixed form equations are given for ribbed shells of the general form and for the Kirchhoff-Love model. For ribbed shallow shells, an algorithm for their solution has been developed and the results of calculating their stability for a different number of reinforcing ribs are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.