Abstract

본 연구에서는 신경망 학습의 일반화 성능과 학습속도를 개선시키기 위한 인자들의 결합 효과를 살펴본다. 신경망 학습에서 중요한 평가 척도로서 여기서 고려하는 인자들에는 초기 가중값의 범위와 학습률 그리고 계수조정 등이 있다. 특히 초기 가중값과 학습률을 고정시킨 후 새롭게 조정된 계수들을 단계적으로 변화시키는 새로운 인자 결합방법을 이용한다. 이를 통하여 신경망 학습량과 학습속도를 비교해 보고, 계수조정을 통한 개선된 학습 영향을 살펴본다. 그리고 비선형의 단순한 예제를 이용한 실증분석을 통하여 신경망 모형의 일반화 성능과 학습 속도 개선을 위한 각 인자들의 개별 효과와 결합 효과를 살펴보고 그 개선 방안을 논의한다. The goal of this paper is to study the joint effect of factors of neural network teaming procedure. There are many factors, which may affect the generalization ability and teaming speed of neural networks, such as the initial values of weights, the learning rates, and the regularization coefficients. We will apply a constructive training algerian for neural network, then patterns are trained incrementally by considering them one by one. First, we will investigate the effect of these factors on generalization performance and learning speed. Based on these factors' effect, we will propose a joint method that simultaneously considers these three factors, and dynamically hue the learning rate and regularization coefficient. Then we will present the results of some experimental comparison among these kinds of methods in several simulated nonlinear data. Finally, we will draw conclusions and make plan for future work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.