Abstract

The problem of estimation of a stochastic linear system has been a matter of active research for the last years. One of the simplest models considers a ‘black box’ with some input and a certain output. The input may be single or multiple and there is the same choice for the output. This generates a great amount of models that can be considered. The sphere of applications of these models is very extensive, ranging from signal processing and automatic control to econometrics (errors-in-variables models). In this paper a time-invariant continuous linear system is considered with a real-valued impulse response function. We assume that impulse function is square-integrable. Input signal is supposed to be Gaussian stationary stochastic process with known spectral density. A sample input–output cross-correlogram is taken as an estimator of the response function. An upper bound for the tail of the distribution of the supremum of the estimation error is found that gives a convergence rate of estimator to impulse response function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.