Abstract

Fatigue crack growth behavior of a Ti-48Al-2Mn-2Nb (at%) alloy with lamellar microstructure has been investigated at room temperature in laboratory air. Single-edge-notched (SEN) specimens with different lamellar colony size and lamellar thickness were prepared by appropriate heat-treatments. The values of fatigue crack growth rate scattered largely for the specimens with large colony size. The highest crack growth resistance was obtained when the orientation of lamellar plates was aligned perpendicular to the crack growth direction. These results indicate that the lamellar orientation at crack tip dominates the fatigue crack growth behavior in the large colony sized specimens. For the specimens with small colony size, fatigue crack growth resistance appears to be averaged since the orientation of lamellar colony is random at the crack tip. Fatigue crack growth resistance in the air cooled specimens is higher than that in the furnace cooled ones. This may be due to the difference in lamellar thickness, type of lamellar boundary and/or quantity of α2 phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.