Abstract

Increasing production capacities and developing ventilation systems in underground mines challenge mining enterprises to enhance the output level of applied mining and ventilation facilities. Most of the rock loading and transporting mining machinery at ore deposits is powered by diesel internal combustion engines. Insufficient ventilation or wrong approaches to determining the amount of air required to dilute the main components of exhaust gases from internal combustion engines, including carbon monoxide and nitrogen oxides, can result in poisoning or even death of mining workers. However, most production facilities make their ventilation systems operate at the capacity limits without any opportunities to increase their technical reserves. This fact has a direct impact on safety of mining operations. We present methods and equations aimed at determining the required air quantity for the operating areas of the vehicles equipped with internal combustion engines and the underground mines at their designing and operation stages. The analysis of regulatory documentation shows that there is no requirement to airflow rate per power unit of internal combustion engines. Therefore, we propose an approach that meets up-to-date industrial safety requirements based on the actual emissions of harmful components, performance parameters of internal combustion engines and emission standards guaranteed by manufacturers though confirming an engine’s emission class compliance. The proposed methods will allow us to enhance workplace safety at underground mines where internal combustion engine equipment is on duty, and to increase the efficiency of designing new blocks, horizons and mines by eliminating unreasonable reserves when selecting mining and ventilation equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call