Abstract

This article presents the results of the mechanochemical activation of coal in a shock-grinding-type mill and the γ-radiation effect of a stream of electrons at the LU-6 electron accelerator. It was established that during the hydrogenation of dispersed coal, the yield of both total liquid products and coal distillates of various fractional composition increases. The maximum yield of liquid products (69.2 wt.%), gasoline (13.9 wt.%) and diesel (18.7 wt.%) fractions was observed during the hydrogenation of crushed coal for 30 min. It has been shown that the irradiation of coal with an electron flow (an irradiation dose of 150 kGy) also increases its reactivity in the process of hydrogenation, and also promotes the formation of free radicals and changes in iron compounds that make up the coal hydrogenation catalyst based on natural bauxite from the Turgai deposit. The non-linear regression method established the functional dependence of the yield of liquid products on the radiation dose, on the time of mechanical activation and on the concentration of free radicals, which are of an extreme nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.