Abstract

The qualitative composition of the fuel-air mixture, which is formed in the torch igniter of the combustion chamber of the gas turbine engine (GTE), determines the efficiency and reliability of their work. The main task of the study is to determine the qualitative composition of the fuel-air mixture near the electric spark plug of the GTE torch igniter depending on its geometric features and engine operation condition. The composition of the mixture was evaluated using analytical, experimental, and numerical methods. According to the analytical model, a significant over-enrichment of the fuel-air mixture in the igniter housing was established and confirmed experimentally. A numerical model was used to determine the fields of mass concentration of fuel particles in the fuel-air mixture in the torch igniter housing, considering the peculiarities of airflow and fuel supply for different combinations of GTE design features and operating conditions. The influence of geometric parameters of the housing and external factors was investigated using the numerical model of stationary combustion of fuel-air mixture, which was prepared in the torch igniter housing of GTE combustion chamber by evaporation and spraying of aviation kerosene particles in the air stream. The implementation of a small-factor experiment allowed to establish the degree of influence of each factor under study and their interaction on the excess air coefficient. The correlation coefficient between the coefficient of excess air near the spark plug and the average flame temperature is set. Given the absence of serial designs of controller torch ignites, it is proposed to use a pulsed fuel supply to control the quality of the fuel-air mixture. Further ways of research to increase the reliability of ignition of both the torch igniter from the electric spark plug and the combustion chamber of GTE from the flame is outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.