Abstract
The article considers a probabilistic method for determining production functions. The method consists in finding the expected value of the function that determines the economic and mathematical principle of production. It is assumed that the factors of production and/or their specific values included in this function are random variables. It is shown that depending on the principle of production such averaging gives different probabilistic classes of production functions. Functions that are elements of the same class differ from each other in the probability distribution of the relations of production factors to their specific values. Two probabilistic classes of produc-tion functions are constructed. The first class is generated by the Leontief production principle, the second – by generalization of this principle for the case of partially or completely fungible factors of production. There are established the laws of probability distribution and the conditions, under which the linear combination of the AK-model and the Cobb-Douglas production function, as well as the CES production function, are elements of the class of Leontief production functions. It is shown that the linear production function belongs to the class of generalized Leontief production functions. The probability density functions of the products number for these two classes of pro-duction functions are found.
Highlights
The article considers a probabilistic method for determining production functions
It is assumed that the factors of production
their specific values included in this function are random variables
Summary
Установлены законы распределения вероятностей и условия, при которых линейная комбинация AK-модели и производственной функции Кобба – Дугласа, а также производственная функция CES являются элементами класса производственных функций Леонтьева. Если существуют основания считать факторы, X 2 и/или их удельные значения x1 , x2 , а вместе с ними и мощности факторов Q1, Q2 случайными величинами, то производственной функцией следует называть не функциональную зависимость Q = f (Q1, Q2 ) , а зависимость математического ожидания количества выпускаемой продукции Qɶ от параметров, входящих в законы распределения вероятности случайных величин Q1, Q2 :
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.