Abstract
Рассматривается нелинейная задача о равновесии упругого тела с периодически расположенными трещинами. При этом на краях трещин ставятся односторонние ограничения, что приводит к вариационному неравенству. Период распределения трещин, а также их размеры зависят от малого параметра. Поведение решения задачи с периодически расположенными трещинами определяется двумя первыми членами u0(x), u1(x, y) асимптотического разложения. В статье изучается решение вариационного неравенства на ячейке периодичности (локальная задача). Для первого корректора u1(x, y) строится уравнение со штрафом и линейное итерационное уравнение в интегральной форме. Доказано, что последовательность решений задачи со штрафом при стремлении малого параметра регуляризации к нулю сходится к решению задачи на ячейке. Показано, что приближенное решение итерационного уравнения сходится сильно к решению уравнения со штрафом.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.