Abstract
At present, shallow tillage plays a leading role in the technological process of cultivating agricultural crops, as it is one of the key operations in soil preparing for sowing. To establish the optimal parameters of the working tool for shallow tillage, the authors designed the tool capable of using various main operating elements (a flat hoe and a post lining). The main criterion for optimizing the parameters of the working tool was the traction resistance. Experimental studies were carried out in the field conditions. The optimal operating parameters of the working tools for shallow tillage were determined against the stubble background of winter wheat after its disc plowing in one track. The experimental research methodology included planning a multi-factorial experiment. The main changing factors included: the share opening angle of the flat hoe of the working tool; the sharpening angle of the working tool post and the soil cultivation depth by the working tool. Based on data processing and analysis, the authors obtained a regression equation, which helps calculate the traction resistance depending on the specified parameters of the working tool and the soil cultivation depth. As a result of experimental studies, the optimal parameters of the working tool were determined: the share opening angle of the flat hoe g 104, as well as the sharpening angle of the working tool post f 50.At a tillage speed of 8.20 km/h, the minimum traction forces generated by a single working tool with an operating width of 0.5 m at the depth of 8 cm is 1.902 kN, at 12 cm – 2.482 kN and at 16 cm – 4.758 kN. The data obtained can be used in the design of working tools and agricultural machines for shallow soil cultivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.