Abstract

Mathematical models for the motion of weak solutions of polymers have been studied over the past 50 years. The initial model (Voitkunskii, Amfilokhiev, and Pavlovskii, 1970) contains two key parameters - relaxation viscosity and shear stress relaxation time. In the limiting case, when the last parameter is small, the Pavlovskii model (1971) arises. Its equations are close to second-grade fluid equations (Rivlin and Eriksen, 1955). The paper contains an overview of the works on all three models and new results related to the Pavlovskii model. The solution to the problem of the un-steady layered flow of an aqueous polymer solution in a layer with a free boundary, the boundary condition on which includes the time derivative of the desired function is constructed. We derive the equations that describe the motion of a polymer solution in a laminar boundary layer near a rectilinear plate. The parameter included in equations characterizes the ratio of the thickness of the Prandtl boundary layer to the thickness of the relaxation boundary layer. We study the influence of this parameter on the motion picture by the example of a stationary flow near a critical point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call