Abstract

Nowadays the problem of optimal restorative prosthetics on dental implants is of paramount importance for solving a number of clinically difficult cases and extends beyond the alternative treatment at the complete and partial adentia both on the upper and lower jaws. An essential factor here is understanding of the biomechanical behaviour of the implant-abutment interface, because an optimal implant-abutment interface simulates the biophysical behaviour of natural teeth and ensures the long-term function of the prosthetic restoration. The optimal method for assessing the implant-abutment junction is the static tensile strength method. The limit is determined by performing a single loading of the dental implant in the implant-abutment area.
 The aim of the study was to assess the implant-abutment deformation of demountable and non-demountable structures of the 4*10 cylindrical and cone-shaped dental implants with determination of their static strength limit.
 Materials and methods. Two brands of dental implants have been chosen as the objects of research – cylindrical implant LIKO M 4x10 and cone-shaped implant LIKO M DG 4x10. A subject of the research is the ultimate strength of the implant-abutment unit of demountable and non-dismountable abutment design. 
 Results. Static loading tests with estimation of the deformation limit of the implant-abutment unit were carried out along with the comparative estimation of the strength of demountable and non-demountable abutment constructions of dental implants of various shapes. 
 Conclusion. The carried out comparative analysis of the static strength makes it possible to optimise the process of orthopaedic treatment on dental implants taking into account the maximal limits of the loaded structures and to carry out the equilibrium load distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.