Abstract
Atmospheric bulk (wet and dry) samples were monthly collected in an urban environment (Daeyeon-dong) of Busan over a year, to assess the deposition flux and seasonality of dioxin-like polychlorinated biphenyls (DLPCBs) using stainless steel pots. Deposition fluxes of DLPCBs in bulk samples were determined using high resolution gas chromatography coupled to high resolution mass spectrometry (HRGC/HRMS). Particle deposition fluxes in the urban environment varied from 23 to 98 <TEX>$mg^2$</TEX>/year (mean 41 <TEX>$gm^2$</TEX>/year). DLPCB deposition fluxes in atmospheric bulk samples ranged from 0.09 to 0.77 ng-<TEX>$TEQ/m^2$</TEX>/year (mean 0.35 ng-<TEX>$TEQ/m^2$</TEX>/year). Seasonal atmospheric deposition fluxes of DLPCBs were high in winter and low in summer. Atmospheric deposition fluxes of particles and DLPCBs in this study were comparable to or slightly lower values than those of different locations in the world. Monthly DLPCB profiles in deposition bulk samples were similar over a year. Non-ortho PCBs were higher contributions to the total DLPCBs fluxes than mono-ortho PCBs. In particular, PCB 126 had the highest concentrartion (>75%) in all deposition samples, followed by PCB 169 and PCB 156. A highly positive correlation was found among the deposition fluxes of DLPCB species, suggesting the possibility of that the DLPCB contamination originated from one source. The deposition fluxes of DLPCBs were not significantly correlated with temperature and the amount of precipitation even though the summer season with the highest temperature and the largest amount of precipitation showed the lowest DLPCB deposition flux.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have