Abstract

The article considers an electronic system for detecting unmanned aerial vehicles, which includes a radar system, an optoelectronic system, a thermal imaging system, and an acoustic system. In information technology, the development of a software discrete-continuous stochastic model of the operational behavior of an electronic complex is an important stage in the creation of a structural-automatic model. The creation of a structural-automatic model is described in the article in the following sequence: description of the selected algorithm for the functioning of the electronic complex; verbal model of the operational functional behavior of the electronic complex; according to the verbal model, the development of a reference graph of states and transitions is described; on the basis of the reference graph of states and transitions, a structural-automatic model of operational behavior is formed; the need to verify the developed structural-automatic model is indicated. The combination of the structural-automatic model of operational behavior with the ASNA-2 software module forms a software stochastic model. The software stochastic model is designed to solve the problems of system engineering design (analysis and synthesis) of an electronic complex. The structural-automatic model allows the Designer to set any values of the performance indicators of the systems that are included in the electronic complex. The ASNA-2 software module automates the construction of state graphs based on the structural automated model; according to the state graph, it generates and solves the Kolmogorov-Chopman system of differential equations. By validating the software stochastic model, the reliability of the results to be obtained by the Projector was verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call