Abstract

Creation of mathematical models that allow determining the relationship between the design and technological parameters of the plate feeders and the energy consumption arising during their operation. Methodology. The work uses the classical mechanics principles, the contact interaction of solids theory and the mathematical modeling method. Findings. The paper considers the design and operation principle of a continuous plate feeder, defines its main design and technological parameters. The factors that create mechanical loads on the drive of the feeder plate are investigated. Mathematical models have been developed that make it possible to determine the moments of resistance and the power consumed by an electric motor during the equipment operation. The proposed models make it possible to determine the load on the drive in static and dynamic operation modes and take into account the design, technological parameters of the equipment and the bulk material physical and mechanical properties. The study results of the friction coefficients influence, the knife position and the force of its pressing on the plate surface, the plate rotation speed on the loads acting on the electric drive are presented. It has been found that the drive calculation is expedient for the mode in which the distance between the knife edge and the rotation axis of the plate is maximum, which corresponds to the operation at maximum load. It has been determined that a change in the feeder technological parameters (plate rotation speed, knife position) can lead to a change in the load on the electric drive by 86%, which must be taken into account when choosing a drive. Originality. Mathematical models of the continuous plate feeder operation have been developed, which make it possible to determine the relationship between the design and technological parameters of the plate feeders and energy consumption. Practical value. The results obtained make it possible to determine the load on the plate drive by the known design, technological parameters and bulk material physical and mechanical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.