Abstract
군집분석은 마이크로어레이 발현자료에서 유전자 혹은 표본들의 유사한 특성을 갖는 연관구조를 조사하는데 중요한 도구이다. 본 논문에서는 마이크로어레이 자료에서 계층적 군집방법, K-평균법, PAM (partitioning around medoids), SOM (self-organizing maps) 그리고 모형기반 군집방법 들의 성능을 3가지 군집 타당성 측도인 내적 측도, 안정적 측도 그리고 생물학적 측도를 가지고 비교분석하고자 한다. 모의실험을 통해 생성된 자료와 실제 SRBCT (small round blue cell tumor) 자료를 가지고 여러 가지 군집방법들의 성능을 비교하였으며 그 결과 모의실험 자료에서는 거의 모든 방법들이 3가지 군집측도에서 원래 자료와 일치하는 좋은 군집 결과를 나타내었고 SRBCT 자료에서는 모의실험 자료처럼 명확한 군집화 결과를 보여주지는 않으나 내적측도의 실루엣 너비 (Silhouette width) 관점에서는 PAM 방법, SOM, 모형기반 군집방법 그리고 생물학적 측도에서는 PAM 방법과 모형기반 군집방법이 모의실험 결과와 비슷한 결과를 얻었고 안정적 측도에서 모형기반 군집방법이 다른 방법들보다 좋은 군집결과를 보여주었다. Cluster analysis has proven to be a useful tool for investigating the association structure among genes and samples in a microarray data set. We applied several cluster validation measures to evaluate the performance of clustering algorithms for analyzing microarray gene expression data, including hierarchical clustering, K-means, PAM, SOM and model-based clustering. The available validation measures fall into the three general categories of internal, stability and biological. The performance of clustering algorithms is evaluated using simulated and SRBCT microarray data. Our results from simulated data show that nearly every methods have good results with same result as the number of classes in the original data. For the SRBCT data the best choice for the number of clusters is less clear than the simulated data. It appeared that PAM, SOM, model-based method showed similar results to simulated data under Silhouette with of internal measure as well as PAM and model-based method under biological measure, while model-based clustering has the best value of stability measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Data and Information Science Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.