Abstract
Subject and Purpose. In the context of growing anticipation of fundamentally new optical and radiophysical devices, the present study is concerned with the total electromagnetic wave tunneling through an asymmetric three-layer structure such that contains a conductive negative-permittivity layer. The aim of this work is to recognize how the asymmetry property of this three-layer structure acts on the effect of total wave tunneling with the frequency dispersion of the conductive negative-permittivity layer taken into account. Methods and Methodology. The frequency-dependent conditions of the total electromagnetic wave tunneling through an asymmetric three-layer structure are sought by numerical simulations. A universal approach based on the introduction of dimensionless frequencies and dimensionless layer thicknesses allows us to numerically investigate conditions of the total electromagnetic wave tunneling for any desired frequencies and geometric parameters of the asymmetric three-layer structure. Results. It has been shown that the asymmetry property of the three-layer structure can significantly change the total electromagnetic wave tunneling conditions. It has been demonstrated that parameters of the asymmetric three-layer structure can be selected in such a way as to modify the total electromagnetic wave tunneling conditions toward a desired practical application of the structure. It has been found that a proper choice of the parameters can minimize the action of the three-layer structure asymmetry on the electromagnetic wave tunneling effect. Conclusion. Asymmetric three-layer structures can be of use to effectively change conditions of the total electromagnetic wave tunneling in an effort to provide devices under development with desired characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.