Abstract
In this study, we analyze the problem of wedge cracks, which are geometrically unsymmetrical in transversely piezoelectric materials. A single concentrated antiplane mechanical load and inplane electrical load are applied at the point of the wedge surface, while one concentrated antiplane load is applied at the crack surface. The crack surfaces are considered as permeable thin slits, where both the normal component of electric displacement and the electric potential are assumed to be continuous across these slits. Using Mellin transform method, the problem is formulated and the Wiener-Hopf equation is derived. By solving the equation, the solution is obtained in a closed form. The intensity factors of the stress and the electric displacement are obtained for any crack length as well as inclined and wedge angles. Based on the results, the intensity factors are independent of the applied electric loads. The electric displacement intensity factor is always dependent on that of stress intensity factor, while the electric field intensity factor is zero. In addition, the energy release rate is computed. These solutions can be used as fundamental solutions which can be superposed to arbitrary electromechanical loadings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have