Abstract

Improvement of technology design in precision forging process based on development of energy method with power balance and development of recommendation with the rational use of systematized based on kinematic modules in complex configuration to make calculated schemes for power mode assessments and shaping of part in cold forging extrusion process with subsequent software implementation are considered. Methodology. Energy method of power balance is considered based on kinematic module method that will be systematized the results of investigation for expanding in cold forging extrusion process with the definition of the power mode in deformation and features of semi-finished product shaping to make hollow and rod parts with flange such as sleeves and glasses. Results. Development results of recommendation with the rational use of systematized based on kinematic modules in complex configuration to make calculated schemes including with the ability to quickly take into account changes in the configuration of the tool have been determined. This made it possible to define the several factors for controlling the shaping of the semi-finished product in combined and sequential combined cold forging extrusion processes. Scientific novelty. Energy method of power balance is considered such as an effective method of preliminary analysis to determine the area of rational use in cold forging process based on process technology design to make complex parts. Practical significance. Software product development with extended systematization based on kinematic modules, complex of calculation models in cold forging extrusion with power mode assessments and to predict shaping of part and defect formation such as dimple defect will contribute more active implementation in the manufacturing industry for combined cold forging extrusion processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call