Abstract
현대사회는 인터넷과 IT융합기술의 발달로 정보의 양이 급속도로 늘어나고 있으며, 이로 인하여 많은 데이터 속에 원하는 정보를 용이하게 획득하거나 검색하는 기술도 발전되고 있다. 의료 관련 시스템통합 또한 다양하게 구축 되어 정보의 누적량이 비약적으로 증가하고 있으나 구축된 자료를 활용한 간호활동의 정보제공 및 지원 내용은 미흡한 실정으로 특히 통증의 중재에 관한 판단은 간호사 개인의 경험적 판단에 의존하게 되는 것이 현실로서 대체적으로 주관적 판단이 내려지게 된다. 본 논문에서는 기존의 의료관련 데이터를 활용, 추출하고 협력적 필터링을 이용한 통증 간호중재 지원 방법론을 제안한다. 제안하고자 하는 협력적 필터링은 유사한 선호도를 기반으로 관련도가 높은 아이템을 추출하는 방법으로 사용자 기반의 협력적 필터링을 이용한 선호도 예측 방법은 피어슨 상관 계수에 의해 사용자 유사도를 구하고, 사용자의 선호도를 기반으로 이웃 선정방법을 사용한다. In modern society, the amount of information has been significantly increased according to the development of Internet and IT convergence technology and that leads to develop information obtaining and searching technologies from lots of data. Although the system integration for medicare has been largely established and that accumulates large amounts of information, there is a lack of providing and supporting information for nursing activities using such established database. In particular, the judgement for the intervention of pains depends on the experience of individual nurses and that leads to make subjective decisions in usual. In this paper, a pain nursing supporting method that uses the existing medical data and performs collaborative filtering is proposed. The proposed collaborative filtering is a method that extracts some items, which represent a high relativeness level, based on similar preferences. A preference estimation method using a user based collaborative filtering method calculates user similarities through Pearson correlation coefficients in which a neighbor selection method is used based on the user preference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.