Abstract
The authors have determined the conditions for the eff ective use of modern electrifi ed circular sprinklers in the central part of Russia. Their designs are chosen depending on the agrotechnical requirements for irrigation, including the change in the diameter of the water distribution pipeline. However, when the diameter of the pipeline changes, the load on the electric drive of the support trolleys of the sprinkler changes too, which leads to a corresponding change in energy consumption. In turn, this also changes the load of the water supply pump. The paper sets the task of determining the optimal change in the diameter of pipelines according to the criterion of minimum energy consumption, taking into account a number of assumptions. The authors have analyzed the relationship between the change in the load on the electric drive of the sprinkler support trolley and the change in the diameter of one sprinkler section pipeline. It has been found that a decrease in the diameter by 27% (for example, the transition of the diameter of 219 mm to the diameter of 159 mm) leads to a decrease in the load on the electric drive by 38%. However, this also leads to an increase in the head loss in the water supply pump motor and, respectively, to an increase in the load and energy consumption by 0.8…3.8%. The eff ect is initially obvious, but the power of the electric motor of the water supply pump is 10…25 times higher than that of the electric motor of the sprinkler support trolley. Based on the similarity coeffi cients of the irrigation components (water supply and water distribution), the relationship beteween the total energy consumption and the change in the diameter of the water distribution pipeline has been obtained. By diff erentiating the obtained function, the dependence of the value of the optimal diameter for specifi c operating conditions is also obtained. Graphs of the relationship between energy consumption and the change in diameter have been determined, taking into account some restrictions: pump supply, static pressure, and the number of the sprinkler sections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.