Abstract
В работе исследуются многообразия представлений двух классов конечно порожденных групп.Первый класс состоит из групп с копредставлением\begin{gather*}G = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g\mid\\ a_1^{m_1}=\ldots=a_s^{m_s}= x_1^2\ldots x_g^2 W(a_1,\ldots,a_s,b_1,\ldots,b_k)=1\rangle,\end{gather*}где $g\ge 3$, $m_i\ge 2$ для $i=1,\ldots,s$ и$W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ --- элемент в нормальной формев свободном произведении циклических групп $H=\langle a_1\mid a_1^{m_1}\rangle\ast\ldots\ast\langle a_s\mid a_s^{m_s}\rangle\ast\langle b_1\rangle\ast\ldots\ast\langle b_k\rangle$.Второй класс состоит из групп с копредставлением$$G(p,q) = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g,t\mid a_1^{m_1}=\ldots=a_s^{m_s}=1,\ tU^pt^{-1}=U^q \rangle,$$где $p$ и $q$ --- целые числа, такие, что $p>|q|\geq1$, $(p,q)=1$, $m_i\ge 2$ для $i=1,\ldots,s$, \linebreak $g\ge 3$,$U=x_1^2\ldots x_g^2W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ и $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ --- элемент, определенный выше.Найдены неприводимые компоненты многообразий представлений $R_n(G)$ и $R_n(G(p,q))$, вычислены их размерности и доказано, что каждая неприводимаякомпонента является рациональным многообразием.
Highlights
Irreducible components of representation varieties Rn(G) and Rn(G(p, q)) are found, their dimensions are calculated and it is proved, that every irreducible component is a rational variety
The first class consists of groups with the presentation
О. Многообразия представлений подгрупп конечного индекса групп Баумслага-Солитера // Труды Института математики НАН Беларуси
Summary
Irreducible components of representation varieties Rn(G) and Rn(G(p, q)) are found, their dimensions are calculated and it is proved, that every irreducible component is a rational variety. Где p и q — целые числа, такие, что p > |q| ≥ 1, g 3, mi 2 для i = 1, . Αs, E2) состоит из 3 неприводимых компонент многообразия R2(G), каждая из которых является рациональным многообразием. Αs, A) состоит из 3 неприводимых компонент, а если A — не скалярная матрица, то T
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.