Abstract
The Dong Lemma in the theory of vertex algebras states that the locality property of formal distributions over a Lie algebra is preserved under the action of a vertex operator. A similar statement is known for associative algebras. We study local formal distributions over pre-Lie (right-symmetric), pre-associative (dendriform), and Novikov algebras to show that the analogue of the Dong Lemma holds for Novikov algebras but does not hold for pre-Lie and pre-associative ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Bulletin of Irkutsk State University. Series Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.