Abstract

One of the most important elements of the cooling system of any automotive internal combustion engine is a coolant. Most often, water and a mixture of water with antifreeze are used as a coolant. Its main function is to transfer heat or to cool the engine. Nanofluids are promising heat carriers, with the help of which it is possible to reduce the metal consumption of aggregates, increase safety in emergency transient modes accompanied by boiling. (Research purpose) The research purpose is studying the possibilities, features and prospects of using innovative heat carriers as coolants of automotive equipment, which will allow overcoming the inefficiency of water and ethylene glycol mixtures, which consists in low thermal conductivity. (Materials and methods) Nanofluids consisting of a base liquid and nanoparticles of a highly heat-conducting material were proposed as innovative heat carriers. Their use in transport power plant coolers will reduce their volume and weight. Mixing of ethylene glycol and copper nanoparticles is effective, in such cases it is important to investigate the effect of the volume fraction of copper nanoparticles and the base liquid on thermal characteristics or to reduce the size of the radiator. Copper nanoparticles have better thermal conductivity than other nanoparticles (for example, aluminum oxide). (Results and discussion) It has been proved that the use of nanofluids in heating and ventilation systems can give a significant increase in heat transfer. At present the science of nanofluids is in its initial stage, for the development of this direction it is necessary to conduct comprehensive experimental studies of their chemical and physical properties, theoretical analysis, and compilation of general calculated correlations. (Conclusions) It was revealed that nanofluids can be effectively used as heat carriers of transport engines, with their use the metal consumption of coolers is reduced, the safety of units in emergency modes, including those accompanied by boiling, is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.