Abstract

The relevance An analysis of scientific and technical literature in the field of development and research of aircraft engine ignition systems shows that the manifestations of resonant processes in nonlinear discharge circuits of capacitive ignition systems in the presence of two energy storage devices - a storage capacitor and an inductor coil have not been studied with the issuance of recommendations for matching the parameters of energy storage devices. This problem is of significant practical interest from the point of view of optimizing the parameters of the discharge circuits, increasing the energy efficiency and igniting ability of ignition systems. Aim of research Revealing the possibilities of increasing the efficiency of capacitive ignition systems based on the use of the manifestation of resonant processes in nonlinear discharge circuits containing two energy storage devices. Research methods Studies have been carried out involving a theoretical description of the processes during the discharge of the former charged capacitor to the R-L circuit, followed by experimental confirmation of the assumptions of the alleged states, described with the alleged resonance of occurrence in the discharge circuit using a similar falling current-voltage characteristic. Results The manifestations of resonant phenomena in a capacitive ignition system during the discharge of a capacitor on a non-linear circuit R-L are investigated. It is theoretically substantiated and experimentally proved that the dependences of the voltage in the spark discharge, the current and the energy of the discharges on the capacitance of the storage capacitor at a fixed inductance of the discharge circuit are uneven with inflection points corresponding to the equality of the inductive and capacitive resistances. It is shown that the energy efficiency of the discharge circuit can remain practically unchanged with a more than 1.5-fold decrease in the capacitance of the storage capacitor in the region of manifestation of resonant processes. The results obtained make it possible to coordinate the parameters of capacitive ignition systems, to determine the optimal values of the inductance of the discharge circuits for a given value of the capacitance of storage capacitors to ensure maximum energy efficiency and igniting capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call