Abstract

В работе представлен приближенный алгоритм моделирования стационарного дискретного случайного процесса с одномерными и двумерными распределениями его последовательных компонент в виде смеси двух гауссовских распределений. Алгоритм основан на комбинации метода условных распределений и метода исключения. Приведен пример применения алгоритма для моделирования временных рядов максимальной за сутки температуры воздуха. The paper presents an approximate algorithm for modeling a stationary discrete random process with marginal and bivariate distributions of its consecutive components in the form of a mixture of two Gaussian distributions. The algorithm is based on a combination of the conditional distribution method and the rejection method. An example of application of the proposed algorithm for simulating time series of daily maximum air temperatures is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.