Abstract
В статье представлены результаты применения алгоритмов машинного обучения к задаче автоматического выявления глагольных и атрибутивных коллокаций . Изучение сочетаемости показало, что дистрибуционные модели могут быть успешно использованы для моделирования отношений внутри словосочетаний. Словосочетание признается значимым, если его векторное представление близко к векторному представлению заглавного слова. Нами были использованы следующие методы оценки коллокаций на основе машинного обучения и векторных представлений текстов: базовый метод, метод аналогии и линейного преобразования. Автоматически выделенные словосочетания сравнивались с данными, приведенными в лексикографических источниках (в толковых словарях и словарях сочетаемости, всего было рассмотрено пять источников), которые образовали так называемый золотой стандарт. Результаты показали, что рассматриваемые методы успешно используются для извлечения словосочетаний, в том числе находят те, которые не отражены в словарях. Данные примеры могут претендовать на лексикографическоое описание, хотя и не приведены в источниках и нуждаются в дополнительной экспертной проверке. Поэтому необходимо дополнительно провести сравнение использованных алгоритмов с другими статистическими метриками и увеличить количество словосочетаний, которые привлечены в качестве золотого стандарта.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Компьютерная лингвистика и вычислительные онтологии
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.