Abstract

Objective: To develop and justify energy-efficient and energy-saving control technology of traction electric drive with maximum realization of traction properties. Methods: Mathematical modeling, experimental manufacturing of prototypes of the converters and control system. Results: Theoretical justification was presented, based on refinement of the theory of energy processes in electrical circuits with solid state power controllers. It was proposed to apply electrical resistance of elements in electric power systems as a power control parameter instead of the conventional voltage. It was revealed that, in contrast to the existing analogues, semiconductor power regulators of different application with a new control parameter acquire the property of the electric variator. Technical solutions for manufacturing an innovative traction electric rolling stock were introduced with the use of advanced technical solutions of power control with adaptive control system that provides improved traction properties without shortening irreversible transformation of electric energy of power semiconductor devices. As an example, the solutions involving artificial intelligence in control systems of complex technical systems were presented, based on graphics processors, neural networks, providing parallel processing of large information arrays. Practical importance: Introduction of electric solid state variable speed with adaptive, intelligent control systems will significantly raise energy efficiency and improve the implementation of traction parameters of the locomotive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.