Abstract
Introduction. The paper presents the results of a study of the use of a tool electrode (TE), manufactured by selective laser alloying from MS1 maraging steel powder for copy-piercing electrical discharge machining (EDM). Purpose of the work: experimental study of the features of the use of additively manufactured TE in the EDM of critical products. Research methods. The specimens were prepared using a ReaLizer SLM 50 system. The starting material was spherical MS1 powder with an average particle size of 30 μm. To test the modes and select a TE sample with the least number of surface defects, four manufacturing modes were tested, and the best TE sample was selected for further research. The EDM was carried out on EMT Smart CNC equipment in a dielectric oil environment. The specimens were installed in a clamp with straight polarity and were used as TE; a 0.12C-18Сr-10Ni-Тi steel plate served as the workpiece electrode. The study was conducted using a factorial experiment (type 23) with a central design. The input data of the factorial experiment is the current I (A), voltage U (W), pulse on time Ton (μs). The output parameters were the roughness parameter Ra and tool electrode wear γ. The roughness parameter Ra was measured using a Mahr Perthometer S2. Results and discussion. TE samples were made from MS1 powder using the SLS method; the highest quality TE sample No. 4 was selected for EDM. Empirical equations are obtained that describe the relationship between the roughness parameter Ra and tool electrode wear γ, depending on the EDM modes. At the minimum mode with a current I = 4 A and a voltage U = 50 V, the tool electrode wear is γ = 0.0063875 g. The maximum tool electrode wear is γ = 0.13938 g with a current I = 8 A and a voltage U = 50 V. It is established that at a constant pulse on time Ton = 75 μs, the smallest roughness Ra = 2.83 μm is obtained at a current of I = 4 A and a voltage U = 100 V, and the maximum roughness is Ra = 4.1568 μm at I = 8 A and U = 100 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.