Abstract

The paper describes the arithmetic nature of the values at integer points of series from the so-called class of \(F\)--series which constitute a solution of a system of linear differential equations with coefficients --- rational functions in z. We consider a subclass of the series consisting of the series of the form \sum_{n=0}^\infty a_n\cdot n!\; z^n where \(a_n\in\mathbb Q\), \(|a_n|\leq e^{c_1 n}\), \(n=0,1,\ldots\) with some constant \(c_1\). Besides there exists a sequence of positive integers \(d_n\) such that \(d_n\; a_k\in\mathbb Z\), \(k=0,\ldots,n\) and \(d_n=d_{0,n} d_n\), \(d_{0,n}\in\mathbb N\), \mbox{\(n=0,1,\ldots,d\in\mathbb N\)} and for any \(n\) the number \(d_{0,n}\) is divisible only by primes \(p\) such that \(p\leqslant c_2 n\). Moreover $$ord_p n \leq c_3\left(\log_p n+\frac{n}{p^2}\right).$$ We say then that the considered series belongs to the class \(F(\mathbb{Q},c_1,c_2,c_3,d)\). Such series converge at a point \(z\in\mathbb Z\), \(z\ne 0\) in the field \(\mathbb Q_p\) for almost all primes \(p\). The direct product of the rings \(\mathbb Z_p\) of \(p\)--adic integers over all primes \(p\) is called the ring of polyadic integers. It's elements have the form $$\mathfrak{a} = \sum_{n=0}^\infty a_n\cdot n!,\quad a_n\in\mathbb Z$$ and they can be considered as vectors with coordinates \(\mathfrak{a}^{(p)}\) which are equal to the sum of the series \(\mathfrak{a}\) in the field \(\mathbb Q_p\) (This direct product is infinite). For any polynomial \(P(x)\) with integer coefficients we define \(P(\mathfrak{a})\) as the vector with coordinates \(P(\mathfrak{a}^{(p)})\) in \(\mathbb Q_p\). According to the classification, described in V. G. Chirskii's works we call polyadic numbers \(\mathfrak{a}_1,\ldots,\mathfrak{a}_m\) infinitely algebraically independent, if for any nonzero polynomial \(P(x_1,\ldots,x_m)\) with integer coefficients there exist infinitely many primes \(p\) such that $$P\left(\mathfrak{a}_1^{(p)},\ldots,\mathfrak{a}_m^{(p)}\right)\ne 0 $$ in \(\mathbb Q_p\). The present paper states that if the considered \(F\)--series \(f_1,\ldots,f_m\) satisfy a system of differential equations of the form $$P_{1,i}y_i^\prime + P_{0,i}y_i = Q_i, i=1,\ldots,m$$ where the coefficients \(P_{0,i}, P_{1,i}, Q_i\) are rational functions in \(z\) and if \(\xi\in\mathbb Z\), \(\xi\ne 0\), \(\xi\) is not a pole of any of these functions and if $$\exp\left(\int\left(\frac{P_{0,i}(z)}{P_{1,i}(z)}-\frac{P_{0,j}(z)}{P_{1,j}(z)}\right)dz\right)\not\in\mathbb C(z)$$ then \(f_1(\xi),\ldots,f_m(\xi)\) are infinitely algebraically independent almost polyadic numbers. For the proof we use a modification of the Siegel-Shidlovsky's method and V. G. Chirskii's. Salikhov's approach to prove the algebraic independence of functions, constituting a solution of the above system of differential equations.

Highlights

  • We say that the considered series belongs to the class F (Q, c1, c2, c3, d). Such series converge at a point z ∈ Z, z= 0 in the field Qp for almost all primes p

  • The direct product of the rings Zp of p–adic integers over all primes p is called the ring of polyadic integers

  • N=0 and they can be considered as vectors with coordinates a(p) which are equal to the sum of the series a in the field Qp (This direct product is infinite)

Read more

Summary

АЛГЕБРАИЧЕСКАЯ НЕЗАВИСИМОСТЬ НЕКОТОРЫХ ПОЧТИ ПОЛИАДИЧЕСКИХ РЯДОВ

Статья посвящена исследованию арифметической природы значений в целых точках рядов, принадлежащих так называемому классу F – рядов, составляющих решение системы линейных дифференциальных уравнений с коэффициентами — рациональными функциями от z. Предполагаем также,что степень, в которой число p входит в разложение числа d0,n, обозначаемая ordpn, удовлетворяет при всех n неравенству ordpn. Ряды такого вида сходятся в точке z ∈ Z, z= 0, если рассматривать их, как p–адические числа при любом простом p, кроме быть может конечного числа простых p. Для любого многочлена P (x) с целыми коэффициентами определим P (a) как вектор, координаты которого в поле Qp равны P (a(p)). Xm) с целыми коэффициентами, отличного от тождественного нуля, существует бесконечное множество простых чисел p таких, что. M где P0,i, P1,i, Qi– рациональные функции от z и если ξ ∈ Z, ξ= 0, ξ отлично от полюсов всех этих рациональных функций, то при условии (︂ˆ exp (︂ P0,i(z) P1,i(z). Fm(ξ)– бесконечно алгебраически независимые почти полиадические числа. Ключевые слова: алгебраическая независимость, почти полиадические числа

Moreover ordpn
Pkj l
СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.