Abstract

We consider the calculation schemes for solving elliptic boundary-value problems (BVPs) within the framework of the Kantorovich method that provides the reduction of an elliptic BVP to a system of coupled second-order ordinary differential equations (ODEs). The surface basis functions of the expansion depend on the independent variable of the ODEs parametrically. Here we use the basis functions calculated by means of the finite element method(FEM), as well as the probe parametric surface basis functions calculated in the analytical form. We propose new calculation schemes and algorithms for solving the parametric self-adjoint elliptic boundary-value problem (BVP) in a 2D finite domain, using high-accuracy finite element method (FEM) with rectangular and triangular elements. The algorithm and the programs calculate with the given accuracy the eigenvalues, the surface eigenfunctions and their first derivatives with respect to the parameter of the BVP for parametric self-adjoint elliptic differential equation with the Dirichlet and/or Neumann type boundary conditions on the 2D finite domain, and the potential matrix elements, expressed as integrals of the products of surface eigenfunctions and/or their first derivatives with respect to the parameter. The parametric eigenvalues (potential curves) and the potential matrix elements computed by the program can be used for solving bound-state and multi-channel scattering problems for systems of coupled second-order ODEs by means of the Kantorovich method. We demonstrate the efficiency of the proposed calculation schemes and algorithms in benchmark calculations of 2D elliptic BVPs describing quadrupole vibrations of a collective nuclear model.

Highlights

  • The adiabatic representation is widely applied for solving multichannel scattering and bound-state problems for systems of several quantum particles in molecular, atomic and nuclear physics [1,2,3,4].Such problems are described by elliptic boundary value problems (BVPs) in a multidimensional domain of the configuration space, solved using the Kantorovich method, i.e., the reduction to a system of self-adjoint ordinary differential equations(SODEs) using the basis of surface functions of an auxiliary boundary-value problem (BVP) depending on the independentReceived 9th January, 2017

  • In this paper we propose new calculation schemes and algorithms for the solution of the parametric 2D elliptic boundary-value problem using high-accuracy finite element method (FEM) with rectangular and triangular elements

  • The algorithm and the programs calculate with the given accuracy the eigenvalues, the eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoint elliptic differential equations with boundary conditions of the Dirichlet and/or Neumann type in the finite 2D domain (15)–(17), (18) and the corresponding inhomogeneous boundary-value problem (28)–(33), obtained by taking a parametric derivative of the original 2D BVP

Read more

Summary

Method

6, Miklukho-Maklaya str., Moscow, Russia, 117198 S Saratov State University, Saratov, Russia. We propose new calculation schemes and algorithms for solving the parametric self-adjoint elliptic boundary-value problem (BVP) in a 2D finite domain, using high-accuracy finite element method (FEM) with rectangular and triangular elements. The algorithm and the programs calculate with the given accuracy the eigenvalues, the surface eigenfunctions and their first derivatives with respect to the parameter of the BVP for parametric self-adjoint elliptic differential equation with the Dirichlet and/or Neumann type boundary conditions on the 2D finite domain, and the potential matrix elements, expressed as integrals of the products of surface eigenfunctions and/or their first derivatives with respect to the parameter. The parametric eigenvalues (potential curves) and the potential matrix elements computed by the program can be used for solving bound-state and multi-channel scattering problems for systems of coupled second-order ODEs by means of the Kantorovich method. Key words and phrases: parametric elliptic boundary-value problem, finite element method, Kantorovich method, systems of second-order ordinary differential equations

Introduction
Kantorovich method with the etalon potential
FEM algorithm for solving the parametric 2D BVP
The solution of 2D BVP in the triangular domain
Solution of the parametric 2D BVP for the oscillator potential
The solution of 2D BVP for the C3v oscillator potential
Parametric surface functions for KM in the analytical form
Conclusion
Tetrahedral Symmetry in Nuclei

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.