Abstract
The requirements for a mobile robotic platform (MRP) with an intelligent traffic control system and data transmission protection are determined. Main requirements are the reduction of dimensions, energy consumption, and cost; remote and intelligent autonomous traffic control; real-time cryptographic data protection; preservation of working capacity in the conditions of action of external factors; adaptation to customer requirements; ability to perform tasks independently in conditions of uncertainty of the external environment. It is proposed to develop a mobile robotic platform based on an integrated approach including: navigation methods, methods of pre-processing and image recognition; modern methods and algorithms of intelligent control, artificial neural networks, and fuzzy logic; neuro-like methods of cryptographic data transmission protection; modern components and modern element base; methods of intellectual processing and evaluation of data from sensors in the conditions of interference and incomplete information; methods and means of automated design of MRP hardware and software. The following principles were chosen for the development of a mobile robotic platform with an intelligent control system and cryptographic protection of data transmission: hierarchical construction of an intelligent control system; systematicity; variable composition of equipment; modularity; software openness; compatibility; specialization and adaptation of hardware and software to the structure of algorithms for data processing and protection; use of a set of basic design solutions. The basic architecture of a mobile robotic platform with an intelligent traffic control system and data transmission protection has been developed, which is the basis for the construction of mobile robotic platforms with specified technical and operational parameters. To implement neuro-like tools, the method of tabular-algorithmic calculation of the scalar product was improved, which due to the simultaneous formation of k macroparticle products provides k times reduction of the time of the scalar product calculation. Keywords: mobile robotic platform; intelligent processing; architecture; neural network; autonomous control; sensors; data protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.