Abstract
This paper proposes a UKF-Based indoor localization method that evaluates the optimal position of a robot by fusing the position information from encoders and the distance information of the obstacle measured by ultrasonic sensors. UKF is a method of evaluating the robot’s position by transforming optimal sigma points extracted using the unscented transform and is advantageous for the localization of a nonlinear system. To solve the problem of the specular reflection effect of ultrasonic sensors, we propose a validation gate that evaluates the reliability of the ranges measured by sonar sensors, that can maximize the quality of the position evaluation. The experimental results showed that the method is stable and convergence of the position error regardless of the size of the initial position error and the length of the sampling time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have