Abstract

The present study was conducted to evaluate the effect of resistant starch (RS) on the large bowel function and plasma lipids in rats with constipation induced by Loperamide. Animals were divided into six groups: normal control-5% cellulose, constipation-5% cellulose, constipation-5% pectin, constipation-5% RS-type 2 (RS2), constipation-8% RS2 and constipation-5% RS type 3 (RS3) groups, and fed experimental diets for five weeks. The results from RS groups were compared with those from other dietary fiber groups. The groups supplemented with RS3 or high level of RS2 showed significantly increased counts of bifidobacteria in the cecum than the other groups. The production of total short chain fatty acids in the cecal contents was significantly high in pectin, RS3 and high RS2 groups. The pH in the cecal contents of the RS supplemented groups was significantly decreased compared with the cellulose supplemented groups. The production of prostaglandin E2 in the colon mucus of the RS groups was higher than the normal group; however, it was significantly decreased compared to the cellulose or pectin supplemented constipated groups. The thickness of the mucus layer and the production of mucus from epithelial cells were significantly increased in RS3 group compared to the constipated cellulose group. Supplementation of resistant starch significantly elevated the ratio of HDL-cholesterol to total cholesterol and significantly lowered plasma atherogenic index compared with cellulose or pectin supplementation in constipated rats. The results of the present study demonstrated that resistant starch supplementation may help in improving the large bowel environment by stimulation of bifidobacterial proliferation, reduction of pH and inflammation factor and by increased production of mucus. It has also been found that an additional health benefit is improvement in lipid levels of serum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.