Abstract

One of essential problems in generating pseudo-random numbers is the problem of periodicity of the resulting numbers. Some generators output periodic sequences. To avoid it several ways are used. Here we present the following approach: supposed we have some order in the considered set. Let's invent some algorithm which produces disorder in the set. E.g. if we have a periodic sequence of integers, let's construct an irrational number implying the given set. Then the figures of the resulting number form a non-periodic sequence. Here we can use continued fractions and Lagrange's theorem asserts that the resulting number is irrational. Another approach is to use series of the form \(\sum_{n=0}^\infty \frac{a_n}{n!}\) with a periodic sequence of integers \(\{a_n\}, a_{n+T}=a_n\) which is irrational. Here we consider polyadic series \(\sum_{n=0}^\infty a_n n!\) with a periodic sequence of positive integers \(\{a_n\},a_{n+T} = a_n\) and describe some of their properties.

Highlights

  • We present the following approach: supposed we have some order in the considered set

  • Конечно, не доказывает, что если число имело периодическое полиадическое разложение (2), то в позиционной системе счисления его представление не является периодическим, но служит некоторым пояснением к этой гипотезе

Read more

Summary

Introduction

Если это новое число является иррациональным, то последовательность его цифр является непериодической. Что это число является плохо приближаемым рациональными числами [3]. Там рассматривались ряды вида n=0 с периодической последовательностью целых чисел {an}, an+T = an и была доказана иррациональность таких чисел, если хотя бы одно из чисел a1, .

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.