Abstract
u-Health에 대한 관심과 IT 기술의 발전에 따라 의료 정보를 적극적으로 활용하고자 하는 요구가 커지고 있으며, 이에 대해 텍스트 형태의 의료 정보 데이터에 연관규칙 기법을 적용하여 질병과 증상과의 관계를 추론하는 시스템에 대한 연구들이 이루어지고 있다. 그러나 일반적인 연관규칙 기법을 의료 정보 데이터에 그대로 적용할 경우, 이전에는 새로운 연관규칙들보다 일반적이며 의미없는 연관규칙들이 많이 생성되는 문제가 발생한다. 또한 필터링으로 인해 빈번하게 함께 발생하지는 않지만 의학적으로 의미있는 항목들의 연관 규칙을 발견할 수 없다는 한계점을 가지게 된다. 본 논문에서는 의료데이터 특성을 고려하여 빈번한 항목과 빈번하지 않지만 의학적으로 의미 있는 항목들을 대상으로 연관규칙을 구성하여 의료 전문가의 의사 결정에 도움을 주기 위한 시스템을 제안한다. 제안 시스템은 의료 기록 데이터에서 용어들을 TF-IDF기반으로 가중치를 부여하고 기존 FP-Growth 알고리즘을 확장하여 TF-IDF 가중치를 고려한 빈번하게 발생하거나 빈번하지 않지만 의미 있는 연관규칙을 구성한다. 특정 질의 데이터가 입력되면 해당 데이터에 나타난 연관 규칙들의 유사도를 의학분야 온톨로지를 이용하여 평가하여 해당 데이터의 내용과 관련된 후보 질병들을 추론한다. 추론된 후보 질병명은 의료 전문가에게 의사 결정의 참고 자료로 제공된다. 실제 임상 진료 및 처방 기록 데이터에 대해 제안 시스템을 적용해 본 결과, 본 제안 시스템을 통해 도출한 연관 규칙이 기존 FP-Growth 알고리즘을 적용했을 때 보다 더 구체적인 질병과 증상과의 관계들을 포함함을 확인할 수 있었다. 또한 본 제안 시스템은 자유형식의 의료 및 병리데이터를 마이닝하고 후보 질병들을 가중치 기반으로 보여주므로, 의료 기록 정보로부터 질병 관련 새로운 정보를 획득하고 의료진의 의사 결정에 도움을 주는 시스템으로 활용될 수 있다. Because of the recent interest in the u-Health and development of IT technology, a need of utilizing a medical information data has been increased. Among previous studies that utilize various data mining algorithms for processing medical information data, there are studies of association rule analysis. In the studies, an association between the symptoms with specified diseases is the target to discover, however, infrequent terms which can be important information for a disease diagnosis are not considered in most cases. In this paper, we proposed a new association rule mining system considering the importance of each term using TF-IDF weight to consider infrequent but important items. In addition, the proposed system can predict candidate diagnoses from medical text records using term similarity analysis based on medical ontology.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have