Abstract

Today, both macromodels and transistor-level models of semiconductor integrated circuits are available. However, most models don’t take into account the influence of destabilizing effects. Thus, the tasks of developing new models and fitting the parameters of existing ones are very relevant. In this work, the authors introduced an assumption about the existence of a correlation relationship between all the parameters of integrated circuits’ transistor-level models and offered a way to fit these parameters. The experience of fitting the model’s parameters of the integrated circuit 1564LE1 EP was presented. To simplify this task, all parameters were altered by the same relative deviation. To check the assumption made, the authors carried out full-scale experiment, in which the frequency of the self-oscillation of the ring oscillator based on the 1564LE1 EP was measured in the temperature range. The simulation of the ring oscillator has been made using a SPICE-simulator. The dependences of the self-oscillation frequency on temperature, obtained as a result of simulation and as a result of experiment, were compared before and after fitting the parameters of the integrated circuit model. Also, the waveforms of the ring oscillator based on the original and fitted model were compared. The analysis of the obtained dependences of the frequency of oscillations, the signal shape before and after the model fitting, the link to the text of the fitted model has been provided. The results obtained show the possibility of using the introduced assumption to fit the parameters of the transistor-level integrated circuit model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.