Abstract
Twitter has been a popular social media platform where people post short messages of 140 characters or less via the web. A hashtag is a word or acronym created by Twitter users to open a discussion about certain topics and issues that have a very high percentage of trending. Since the hashtag posts are sorted by time, not relevancy, people who firstly use Twitter have had difficulty understanding their context. In this paper, we propose a HBase-based automatic summary system in order to reduce the difficulty of understanding. The proposed system combines an automatic summary method with a fuzzy system after storing the streaming data provided by Twitter API to the HBase. Throughout this procedure, we have eliminated the duplicate of contents in the hashtag posts and have computed scores between posts so that the users can access to the trending topics with relevancy. ☞ keyword : Twitter trending topics, Automatic summary system, Fuzzy theory, HBase, NoSQL, Twitter API
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.