Abstract
Trending topics in Twitter is a collection of certain topics that are widely discussed by users. This study aims to design a model and strategy for finding trending topics from data streams on Twitter. The research approach was carried out in four stages, namely twitter data collection, preprocessing data, data analysis with sequential K-Means clustering and information processing. Sequential K-Means is used because it can receive input data sequentially and the cluster center can be updated. Testing of the model is carried out in three scenarios where each scenario is distinguished between the amount of data, time and parameter values. After that, evaluation of the results of clustering will be done using the Dunn Index method. Trending topics twitter application were created using the R language and produce output in the form of histograms. There are five topics being the trending topics in New York before the new year. The topic of "Times" relates to the presence of a new year's celebration night concert in Times Square. The "Hours" topic deals with the calculation of time and seconds towards 2017. "Eve" and "Party" topics relate to celebrations and the topic "Resolution" relating to hope and change for New Yorkers in in 2017.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Indonesian Journal of Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.