Abstract
본 논문은 기존의 컬러 히스토그램 방법들의 단점을 극복하고자 영역 특징백터를 이용한 영상 검색 방법을 제안한다. 컬러 히스토그램 검색방법들은 양자화 오류 등의 이유로 정확성이 떨어지는 단점이 있다 이를 해결하기 위해 제안 방법은 색상 정보를 HSY 공간으로 변환하여 순수 색상 정보인 hue 성분만을 양자화하여 히스토그램을 구하고, 이를 명암, 이동, 회전등에 강인한 검색 특징으로 사용한다. 또한 컬러 히스토그램 방법들의 가장 큰 문제점인 공간 정보가 부족한 것은 영상을 16개 영역으로 나눠서 각 영역간의 비교를 통해 해결한다. 그리고 색상 검색에 추가적으로 모양 특징인 에지와 질감 특징인 DCT 변환의 DC를 이용하여 검색의 정확도를 높인다 1,000개의 컬러 영상을 사용해 실험한 결과 기존의 방법들 보다 좋은 정확성을 보인다. This paper proposes a method of content-based image retrieval using region feature vector in order to overcome disadvantages of existing color histogram methods. The color histogram methods have a weak point that reduces accuracy because of quantization error, and more. In order to solve this, we convert color information to HSV space and quantize hue factor being purecolor information and calculate histogram and then use thus for retrieval feature that is robust in brightness, movement, and rotation. Also we solve an insufficient part that is the most serious problem in color histogram methods by dividing an image into sixteen regions and then comparing each region. We improve accuracy by edge and DC of DCT transformation. As a result of experimenting with 1,000 color images, the proposed method has showed better precision than the existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.