Abstract

Пусть $\alpha_{m}$ и $\beta_{n}$ --- две последовательности вещественных чисел с носителями наотрезках $[M,2M]$ и $[N,2N]$, где $M = X^{1/2-\delta}$ и $N = X^{1/2+\delta}$. Мы доказываемсуществование такой постоянной $\delta_{0}$, что мультипликативная свертка$\alpha_{m}$ и $\beta_{n}$ имеет уровень распределения $1/2+\delta-\varepsilon$ (в слабом смысле),если только $0\leqslant \delta<\delta_{0}$, последовательность $\beta_{n}$ являетсяпоследовательностью Зигеля-Вальфиша, и обе последовательности $\alpha_{m}$ и $\beta_{n}$ограничены сверху функцией делителей.Наш результат, таким образом, представляет собой общую дисперсионную оценкудля "коротких"\, сумм II типа. Доказательство существенно использует дисперсионный метод Линникаи недавние оценки трилинейных сумм с дробями Клоостермана, принадлежащие Беттин и Чанди.Также мы остановимся на применении полученного результата к проблеме делителей Титчмарша.

Highlights

  • An important theme in analytic number theory is the study of the distribution of sequences in arithmetic progressions

  • For M and N ≥ 1, we put X = M N and L = log 2X. Whenever it appears in the subscript of a sum the notation n ∼ N will means N ≤ n < 2N

  • Throughout η will denote any positive number the value of which may change at each occurence

Read more

Summary

Introduction

An important theme in analytic number theory is the study of the distribution of sequences in arithmetic progressions. The method relies crucially on the bilinearity of the problem, followed by the use of various estimates for Kloosterman sums of analytic or algebraic origins. For a bound such as (3) to hold one needs to impose a “Siegel-Walfisz condition” on at least one of the sequences αm or βn. When Q > X1/2+ε for some ε > 0, there are only a few results establishing (3) unconditionally in specific ranges of M and N (precisely [9, Theoreme 1], [3, Theorem 3], [11, Corollaire 1], [12, Corollary 1.1 (i)]). 1 follows closely the proof of the conditional result in [8, Theoreme 1] up to the point where Hooley’s.

Conventions
Lemmas
Beginning of the dispersion
The preparation of the variables
Expansion in Fourier series
Preparation of the exponential sums
Conclusion
Proof of Corollary 1
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.