Abstract

The base element of micromagnetic devices are the layered spin-valve structures. Small sizes, compatibility with the CMOS technology, scaling ability and various work conditions make the spin-valve structures a universal component of modern microelectronics. The purpose of present work is the analysis, systematization and generalization of the data of the work theoretical bases, experimental data and the application of spin valves. In the review, the hard disc drives, random-access magnetoresistive memory, the spin-transfer nano-oscillators, the magnetic biosensors, as well as various computing systems, operating on the principles of stochastic and deterministic logic, have been considered. The key theoretical works devoted to giant magnetoresistance and spin transfer have been used. The data on various types of the hard-disc readheads have been systematized, their architecture and parameters have been compared, and it has been shown how modern scientific research of nanomagnetic phenomena accelerates the growth rate of the recording density. The analysis of modern research devoted to magnetoresistive random access memory has been carried out. The problems of energy efficiency and increasing the degree of the integration for these devices have been discussed. The latest achievements in the field of materials, geometry and the properties of the spin-transfer nano-oscillators, as well as the problems and prospects for the development of this technology have been considered. The analysis of theoretical and experimental works, in which the spin-gate structures have been used to perform the logical operations of Boolean and non-Boolean logic, has been carried out. It has been shown how the probabilistic nature of the unstable switching of spin gates is used in the op-eration of the unconventional computing systems, namely, neuromorphic or Bayesian networks. The principles of operation of the spin valves as magnetic biosensors have been considered and the advantages of their application have been discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call