Abstract
Пусть $$(x_n)_{n \geq 0} $$ - s-мерная последовательность типа Холтона, полученная из глобального функционального поля, $$b \geq 2$$, $$\gamma =(\gamma_1,..., \gamma_s)$$, $$\gamma_i \in [0, 1)$$ с b-адическим разложением $$\gamma_i= \gamma_{i,1}b^{-1}+ \gamma_{i,2}b^{-2}+...$$, $$i=1,...,s$$. В этой статье мы докажем, что $$[0,\gamma_1) \times ...\times [0,\gamma_s)$$ - множество ограниченного остатка относительно последовательности $$(x_n)_{n \geq 0}$$ тогда и только тогда, когда \begin{equation} \nonumber \max_{1 \leq i \leq s} \max \{ j \geq 1 \; | \; \gamma_{i,j} \neq 0 \} < \infty. \end{equation}Мы также получим аналогичные результаты для обобщенных последовательностей Нидеррайтера, последовательностей Хинга-Нидеррайтера и последовательностей Нидеррайтера-Хинга.
Highlights
We prove that [0, γ1) × ... × [0, γs) is the bounded remainder set with respect to the sequencen≥0 if and only if max max{j ≥ 1 | γi,j= 0} < ∞
The sets of bounded remainder for the classical s-dimensional Kronecker sequence studied by Lev and Grepstad [4]
We define the dual space N ⊥ ⊆ Fsbm of N to be the null space of H
Summary
A sequence of point sets ((x(ns,)N )Nn=−01)∞ N=1 is of low discrepancy (abbreviated l.d.p.s.) if D((x(ns,)N )nN=−01) = O(N −1(ln N )s−1), for N → ∞. For examples of such a sequences, see, e.g., [1], [3], and [11]. The sets of bounded remainder for the classical s-dimensional Kronecker sequence studied by Lev and Grepstad [4].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.