Abstract

AbstractWe propose a method for obtaining a fluorescence tomographic image for visualization and diagnosis of tissues of a living organism. The method is based on the excitation of the luminescence of multicolor upconverting nanoparticles localized in the depth of the biological tissue or a phantom imitating it by IR light. By recording the changes in the shape of the spectrum of the intensity of luminescence radiation from luminescent nanoparticles on the surface of the tissue, it is possible to obtain information about the depth of their occurrence. To implement this approach, upconverting nanoparticles were synthesized on the base of β-NaYF_4 crystal matrix doped with rare-earth elements Yb^3+, Er^3+, and Tm^3+. The luminescence spectra of the produced nanoparticles upon excitation at a wavelength of 980 nm contain three narrow bands with maxima at wavelengths 540, 655, and 800 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.